5V ECL 1:9 Differential Clock Driver

Description

The MC10E/100E111 is a low skew 1-to-9 differential driver, designed with clock distribution in mind. It accepts one signal input, which can be either differential or else single-ended if the V_{BB} output is used. The signal is fanned out to 9 identical differential outputs. An enable input is also provided. A HIGH disables the device by forcing all Q outputs LOW and all \overline{Q} outputs HIGH.

The device is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate to gate skew within-device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

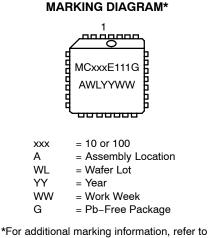
The lowest TPD delay time results from terminating only one output pair, and the greatest TPD delay time results from terminating all the output pairs. This shift is about 10 - 20 pS in TPD. The skew between any two output pairs within a device is typically about 25 nS. If other output pairs are not terminated, the lowest TPD delay time results from both output pairs and the skew is typically 25 nS. When all outputs are terminated, the greatest TPD (delay time) occurs and all outputs display about the same 10 - 20 pS increase in TPD, so the relative skew between any two output pairs remains about 25 nS.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

Features

- Guaranteed Skew Spec
- Differential Design
- V_{BB} Output
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Internal Input 50 KΩ Pulldown Resistors
- ESD Protection: Human Body Model; > 3 kV
- Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test



ON Semiconductor®

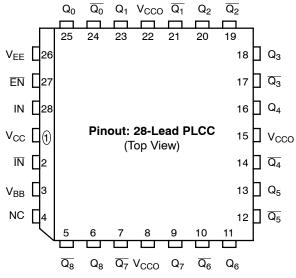
http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

*For additional marking information, refer t Application Note AND8002/D.

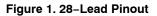
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.


• Moisture Sensitivity Level:

Pb = 1

Pb–Free = 3 For Additional Information, see Application Note AND8003/D


- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 178 devices
- Pb-Free Packages are Available*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All $V_{CC},\,V_{CCO},\,and\,V_{EE}$ pins must be externally connected to Power Supply to guarantee proper operation.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
	ECL Differential Input Pair ECL Enable ECL Differential Outputs Reference Voltage Output Positive Supply Negative Supply No Connect

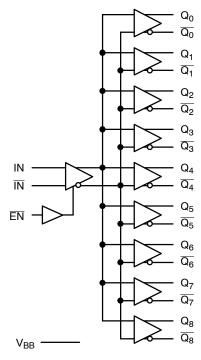


Figure 2. Logic Symbol

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. 10E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V}$ (Note 1)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current		41	60		42	60		43	60	mA
V _{OH}	Output HIGH Voltage (Note 2)	3920	4030	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3230	3350	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage (Single-Ended)	3870	4030	4190	3870	4030	4190	3940	4110	4280	mV
VIL	Input LOW Voltage (Single-Ended)	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.6		3.73	3.65		3.75	3.69		3.90	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5	0.25		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

3. V_{IHCMR} min and max vary 1:1 with V_{CC} .

Table 4. 10E SERIES NECL DC CHARACTERISTICS V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 4)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		41	60		42	60		43	60	mA
V _{OH}	Output HIGH Voltage (Note 5)	-1080	-970	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 5)	-1950	-1770	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage (Single-Ended)	-1130	-970	-810	-1130	-970	-810	-1060	-890	-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V_{BB}	Output Voltage Reference	-1.40		-1.27	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6)	-1.6		-0.4	-1.6		-0.4		1.6	-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5	0.065		0.3	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary -0.46 V / +0.06 V.

5. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

6. V_{IHCMR} min and max vary 1:1 with V_{CC} .

Table 5. 100E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 7)

			−40°C			25°C			85°C		Γ
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		40	60		45	60		50	69	mA
V _{OH}	Output HIGH Voltage (Note 8)	3975	4020	4120	3975	4020	4120	3975	4020	4120	mV
V _{OL}	Output LOW Voltage (Note 8)	3190	3300	3380	3190	3300	3380	3190	3300	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
VIL	Input LOW Voltage (Single-Ended)	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V_{BB}	Output Voltage Reference	3.64		3.75	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	3.4		4.6	3.4		4.6	3.4		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5	0.25		0.5	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

8. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V

9. VIHCMB min and max vary 1:1 with VCC.

Table 6. 100E SERIES NECL DC CHARACTERISTICS V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 10)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		40	60		45	60		50	69	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1025	-980	-880	-1025	-980	-880	-1025	-980	-880	mV
V _{OL}	Output LOW Voltage (Note 11)	-1810	-1700	-1620	-1810	-1700	-1620	-1810	-1700	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.25	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	-1.6		-0.4	-1.6		-0.4	-1.6		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5	0.25		0.5	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V. 11. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V

12. VIHCMR min and max vary 1:1 with VCC.

			−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
f _{MAX}	Maximum Toggle Frequency		800			800			800		MHz	
t _{PLH} t _{PHL}	Propagation Delay to Output IN (Diff) (Note 14) IN (SE) (Note 15) Enable (Note 16) Disable (Note 16)	380 400		630 680 900 900	430 380 450 450		630 680 850 850	430 380 450 450		630 680 850 850	ps	
t _s	Setup Time (Note 17) EN to IN	250	0		200	0		200	0		ps	
t _H	Hold Time (Note 18) IN to EN	50	-200		0	-200		0	-200		ps	
t _R	Release Time (Note 19) EN to IN	350	100		300	100		300	100		ps	
t _{skew}	Within-Device Skew (Note 20)		25	75		25	50		25	50	ps	
t _{JITTER}	Random Clock Jitter (RMS)		< 1	< 2		< 1	< 2		< 1	< 2	ps	
V _{PP}	Minimum Input Swing	50			50			50			mV	
t _r , t _f	Rise/Fall Time	250	450	650	275	375	600	275	375	600	ps	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13.10 Series: V_{EE} can vary -0.46 V / +0.06 V.

100 Series: VEE can vary -0.46 / +0.8 V.

14. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.

15. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

16. Enable is defined as the propagation delay from the 50% point of a **negative** transition on EN to the 50% point of a **positive** transition on Q (or a negative transition on Q). Disable is defined as the propagation delay from the 50% point of a **positive** transition on EN to the 50% point of a **negative** transition on Q (or a positive transition on Q).

17. The setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ± 75 mV to that IN/IN transition (Figure 3).

18. The hold time is the minimum time that EN must remain asserted after a negative going IN or a positive going IN to prevent an output response greater than ± 75 mV to that IN/IN transition (Figure 4).

19. The release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets the specified IN to Q propagation delay and output transition times (Figure 5).

20. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.

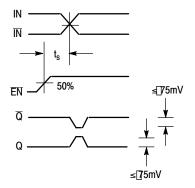
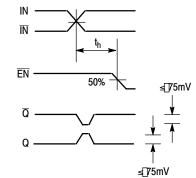



Figure 3. Setup Time

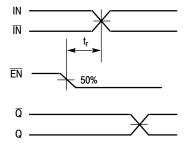


Figure 4. Hold Time

Figure 5. Release Time

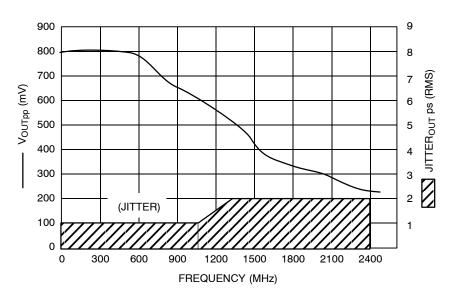


Figure 6. F_{max}/Jitter

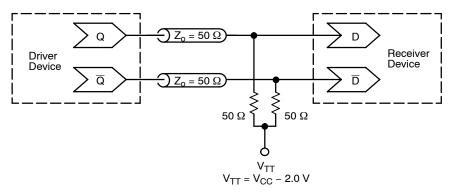
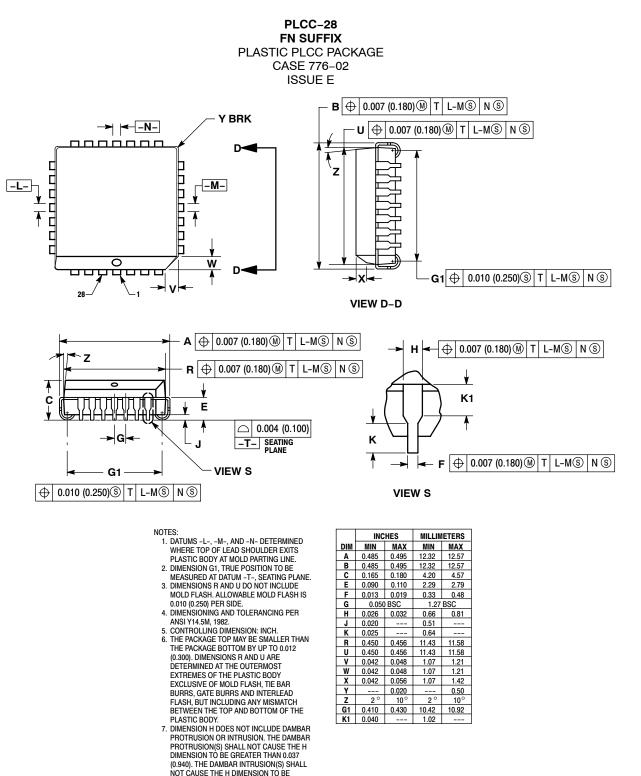


Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10E111FN	PLCC-28	37 Units / Rail
MC10E111FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10E111FNR2	PLCC-28	500 / Tape & Reel
MC10E111FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100E111FN	PLCC-28	37 Units / Rail
MC100E111FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100E111FNR2	PLCC-28	500 / Tape & Reel
MC100E111FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SMALLER THAN 0.025 (0.635).

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse and regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative